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Abstract. Despite its growth in other areas of economics, time series econometric methods have
not been widespread in the area of environmental and resource economics. We illustrate one use of
time series methods by examining the time path of US nitrogen oxide (NOx) emission data over the
period 1900–1994. The analysis highlights that proper time series methods can aid in optimal regu-
latory policy as well as developing empirical verification of theories put forth to explain economic
phenomena. In addition, several interesting results emerge. First, we find that the emissions series
contains both a permanent and random component. Second, if one attributed all of the emissions
reductions to regulatory policy, intervention analysis suggests that the 1970 Clean Air Act (CAA)
did not merely have transitory effects, but permanently influenced the NOx emission path. In terms
of total regulatory impact, an upper bound on the emissions saved due to the 1970 CAA is in the
range of 27%–48%.
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1. Introduction

Examining the time-series properties of real variables, such as GDP, to determine
whether they follow deterministic or stochastic trends has become commonplace
amongst macroeconomists. Yet nearly two decades after Nelson and Plosser’s
(1982) seminal study regarding stationarity of macroeconomic variables, analysis
of environmental time-series data has been sparse.1 Although data availability
represents a serious roadblock, a better understanding of the time paths of pollut-
ants can help shape the development and empirical verification of theories put forth
to explain the temporal behavior of emissions. Accuracy of predicting pollution
paths has far reaching implications such as aiding in the development of optimal
abatement strategies and multilateral bargaining strategies.

Our goal in this paper is to highlight recent innovations in time series econo-
metrics by presenting a dynamic characterization of US emissions for one criterion
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air pollutant-nitrogen oxide (NOx)-while simultaneously providing an external
validity check of the recent analytically intensive self-evaluation carried out by
the Environmental Protection Agency (EPA). Intuition implies that NOx emissions
may have both a permanent and random component.2 In such a circumstance, EPA
mandates can have a permanent and/or a temporary effect on emission levels. If
governmental mandates influence only the temporary component, they are futile
in shaping long-run pollution trends since pollution flows will revert to their
mean. Conversely, if policies affect the permanent component, they are influencing
long-term emission growth paths.

We use a unique data set that is a compilation of US emission data from 1900–
1994 to perform a battery of tests to characterize the stochastic nature of NOx

emission flows. Our empirical findings support the hypothesis that emissions of
NOx follow a unit root process. As discussed in more detail below, this finding
has significant implications for the large number of studies that have found a
Kuznets curve relationship between environmental quality and income. We also
find that EPA mandates have had a permanent effect on emission flows-turning
the difference stationary process into a trend stationary process. We conclude by
estimating the emissions saved due to the Clean Air Act of 1970. Although our
empirical techniques are much less labor-intensive than EPA’s, if one attributed all
of the emissions reductions to regulatory policy, our intervention analysis estimates
reductions in the range of 27%–49%, which are higher than those of EPA’s (1997)
recent self-assessment.3

2. Data and Econometric Methods

As an indicator of previous domestic emission flows, we analyze annual US per
capita NOx emissions over the period 1900–1994. We selected NOx emissions for
our exploratory probe for two reasons. First, NOx was one of the original five
criteria air pollutants targeted for reduction by the Federal government in 1970.
NOx emissions were targeted due to the numerous deleterious effects they have on
the general public-including respiratory illness, decreased pulmonary functions,
immunological changes, and decreased visibility. Besides many primary effects,
NOx also has a plethora of secondary effects. For example, the primary emission
NOx is oxidized in the air or in cloud-water to form new, secondary compounds,
which are acidic (particularly nitric acid) or which add to the ambient levels of
oxidants, such as ozone. Emissions of NOx therefore present an acute problem,
as they are a major precursor to ground-level ozone. Ozone has attracted a large
amount of regulatory attention of late due to the limited progress that has been
made to reduce ozone concentration levels. A second reason to analyze NOx

emissions relates to data availability. Because of the numerous harmful effects of
NOx, EPA has compiled estimates of domestic emissions of NOx over the rela-
tively lengthy period 1900–1994. A time-series of this length allows flexibility in
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the modeling approach and permits an examination of the exogenous factors that
induced a change in the emission path, such as EPA mandates.

The emission data come from the National Air Pollutant Emission Trends
(NAPET), 1900–1994, published by the EPA. The emission estimating methodo-
logies for this time period fall into two major categories: 1900–1984 methodology
and 1985–1994 methodology. Emission estimates from 1900–1984 are based on
national estimates of economic activity, material flows, consumption of fuel, and
in the case of combustion sources, fuel type used. Emissions for the years 1985–
1994 are estimated using a “bottom-up” methodology where emissions are derived
at the plant or county level and aggregated to the national level. Although a poten-
tial shortcoming regarding these data relates to combining indirect estimates with
direct estimates, national emission estimates are largely unaffected by this meth-
odological change due to the accuracy of the indirect approach.4 And, we should
highlight that this methodological change occurred 15 years after 1970, the key
date in our intervention analysis.

In light of our twin goal of analyzing the effects of the Clean Air Act of 1970
(denoted EPA mandates) and simultaneously examining the time-series proper-
ties of emissions, we use two methodologies to examine our time-series. First,
we examine whether emissions contain the mean-reverting property after EPA
mandates which took effect in 1970 is taken into consideration.5 If emissions are
mean reverting, implications are that EPA policies did not permanently alter the
long-run properties of NOx emissions. For this purpose, we employ unit root tests
by allowing and not allowing for an intervention dummy variable. We then compare
results from the unit root tests across these two specifications. The argument in the
literature concerns the potential bias of unit root tests in the presence of a structural
break-the unit root test is biased toward accepting the false unit root null when an
existing structural break is ignored (see, e.g., Perron 1989; Amsler and Lee 1995).
Thus, if two different results are drawn from different model specifications, the
difference may contain important implications.

In our second approach, we employ the intervention analysis of Box and Tiao
(1975) to determine whether EPA policies have had permanent and/or temporary
effects on the growth rates, or levels, of emissions. The focus of the intervention
analysis is not to examine the property of the time series as in the unit root test,
but to take a close look at the nature of the policy changes. Thus, our interven-
tion analysis is complementary to unit root tests. Intervention analysis has many
important advantages. For example, upon EPA intervention it may be difficult to
disentangle short- and long-term effects of EPA policies. This problem is handled
naturally with the Box and Tiao approach, as the issue of whether the effects of EPA
mandates are permanent, gradual, or temporary is self-contained in the model. We
conclude by making use of our time-series models to calculate an upper bound of
the amount of emissions saved due to the Clean Air Act of 1970.
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3. Empirical Results

We begin the empirical investigation by testing for a unit-root in log(NOX1).6 This
preliminary analysis is necessary for two important reasons. First, standard infer-
ence of the time series model is potentially incorrect in the presence of a unit root-a
relevant transformation of the time series is necessary to achieve a correct statistical
inference if a unit root is present. Second, the existence of a unit root implies that
the time series is difference stationary (DS). Whether a time series is DS or not
has important implications. A time series that follows a DS process has tendencies
to drift (upward or downward) over time exhibiting no trend-reversing properties.
Thus, shocks to a variable following a DS process will have a permanent effect
on the level of the variable. In contrast, if a time series follows a trend stationary
(TS) process, it has tendencies to drift (upward or downward) over time exhibiting
trend-reversing properties. The TS process would return to trend after shocks.

As a preliminary analysis, we examine the sample autocorrelation functions
(ACF) of the data. Empirical results are reported in the Appendix B. They show
slowly decaying ACFs, implying that the series appears difference stationary. Our
first two empirical tests for stationarity are the augmented Dickey Fuller (ADF)
unit root tests of Said and Dickey (1984) and the Phillips–Perron (Phillips and
Perron 1989) (PP) unit root tests, which include a drift and/or a trend function. The
ADF unit root tests are denoted as follows:

yt = α + ψ · t + βyt−1 +
k∑

j=1

cj�yt−j + et , (1)

where yt is the log of NOx per capita emissions at time t; α and t are drift and trend
components; yt−j is the lagged value of yt; �yt−j is the lagged change in the log of
NOx per capita emissions; et is the well-behaved error term; and ψ , β, and cj are
coefficients to be estimated. Equation (1) is the standard ADF test for a unit root
and therefore if β = 1, shocks to emissions are permanent and emissions have a
unit root.

Our second unit root test is due to Phillips and Perron (1989), who make
use of transformed statistics using the estimates of two error variances from the
regression:

yt = α + ψ · t + βyt−1 + et . (2)

The innovation variance is estimated as the error sum of squares from the above
regression. The long-run variance is estimated by choosing a truncation lag
parameter l and a set of weights wj , j = 1, . . . , l:

σ̂ 2 = γ̂0 + 2�wj γ̂j (3)

where γ̂j is the jth sample autocovariance of the residuals from (2) and we use
the Fejer kernel weight for wj . Using these estimates of nuisance parameters, PP
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Figure 1. (a) Actual and predicted NOx emissions from ARMA models (case 1). (b) Actual
and predicted NOx emissions from ARIMA models (case 2).

provide transformed tests of the Dickey–Fuller statistics. Precise definitions of the
transformed PP statistics, Z(τ ) and Z(α), are provided in PP (1989, p. 1382).

The plot of the data in Figures 1a and b indicate a trend function for log(NOX1).
Nonetheless, we consider testing procedures with both types of models, one with
trend, and the other with drift. Table I presents results of our initial unit root tests.
Because results of the ADF tests depend on the number of augmentations, we
consider various lags from 0 to 12, and report results using 4, 8, and 12 augmenta-
tion lags. In addition, we compute the Akaike and Schwarz information criteria
(AIC and BIC), and report these statistics for each model type. Overall, at the P <



26 JUNSOO LEE AND JOHN A. LIST

Table I. Unit root tests without intervention

Log(NOX1)

With trend With drift

ADF tests Augmentation lags

0 –2.84 –1.92

4 –1.84 –1.80

8 –2.60 –1.66

12 –1.93 –1.71

AICa –1.71 (1) –1.96 (1)

BICa –1.71 (1) –1.96 (1)

PP tests Truncation lags

4 –2.65 –2.03

8 –2.93 –2.01

12 –3.00 –2.02

Optimal lagb –2.43 (3) –2.06 (4)

∗Significant at the 0% level; ∗∗significant at the 5% level; ∗∗∗significant at the 1% level.
aSelected lags are given in parentheses.
bSelected optimal bandwidth lags of Andrews (1991) are given in parentheses. The Fejer
kernel was used for estimating the long-run variance.
Critical values of the ADF and PP tests at the 10%, 5%, and 1% levels are –3.155, –3.458,
– 4.058 for models with trend, and –2.583, –3.892, –3.501 for models with drift.

0.05 level, our results suggest that we should not reject the null hypothesis of a unit
root in all of the ADF tests.

The bottom panel of Table I presents results from the Phillips and Perron (1989)
unit root tests. We employ 4, 8, and 12 truncation lags for the PP tests, and use the
optimal bandwidth lags of Andrews (1991), and the Fejer kernel in estimating the
long-run variance for the PP tests. Empirical results are essentially unchanged.
Overall, the empirical findings suggest quite strongly that the NOx emission series
is non-stationary, or contains a unit root. These results, however, were obtained by
not taking into account of the potential structural change in 1970.

3.1. HAVE EPA MANDATES INFLUENCED THE TIME SERIES?

As previously mentioned, one test of EPA effectiveness is to examine whether the
1970 EPA mandates have permanent impacts on emissions. One way to achieve this
goal is to analyze if the series is difference stationary after allowing for the policy
dummy variables. We follow Park and Sung (1994), and consider the breaking
slope and crash model which includes dummy variables Dt and Bt (= �Dt), and
DT ∗

t (= t · Dt), in addition to a constant and a trend (t) term in the ADF unit root
testing regression (see Perron 1989).7 Park and Sung’s (1994) test is similar in spirit
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Table II. Unit root tests with intervention

Log(NOX1)

Park and Sung’s Truncation lags Breaking slope & crash

PP-type tests 4 –4.50∗∗
8 –4.74∗∗

12 –4.71∗∗
Optimal lagb –4.16∗ (1)

∗Significant at the 10% level; ∗∗significant at the 5% level; ∗∗∗significant at the
1% level.
aSelected lags are given in parentheses.
bSelected optimal bandwidth lags of Andrews (1991) are given in parentheses. The
Fejer kernel was used in estimating the long-run variance.
cCritical calues of Perron’s and Park and Sung’s tests at the 10%, 5%, and 1%
levels are –3.86, –4.18, –4.75 for models with breaking slope and crash.
dWe choose not to report all regression results for the above test to save space. But,
as an illustration, we report below the estimated regression result for the case of
using the twelve truncation lags.

yt = −1.044 − 0.324yt−1 + 0.004t + 0.024Bt + 0.042Dt − 0.007DTt

to PP, except additional dummy variables are included in the testing regressions.
As suggested by Park and Sung, the testing equations become:

yt = α + ψ · t + d0Bt + d1Dt + d3DT ∗
t + βyt−1 + et , (4)

We note in passing that we do not need to include lagged augmented terms in the
above equation since autocorrelated errors are controlled by the estimated long-
run variance as in Equation (3). Table II presents empirical results for the unit root
tests with intervention. While we report results using different truncation lags, we
focus on estimates using the optimal bandwidth lag. In Table II, we see that we can
reject the unit root hypothesis at the conventional P < 0.05 level for each of the
augmentation levels as well as the model using the optimal bandwidth lag at the
P < 0.10 level.8 Therefore, our findings show that while the emission series could
be seen as non-stationary, it is now seen as trend-stationary when the structural
break in 1970 is accounted for.

These findings may have important implications on model specifications for the
large number of empirical studies that have regressed a measure of environmental
quality on wealth (the environmental Kuznets curve (EKC) literature; see, e.g.,
List and Gallet (1999), and Grossman and Krueger (1995)). A brief review of the
burgeoning EKC literature reveals that stationarity is assumed in the majority of
studies. Our findings suggest that this assumption may be erroneous, and their
conclusions are potentially misleading; the inverted U-shape association between
pollution and wealth may be due to spurious correlation, given that pollution is
seen as non-stationary if the structural change in 1970 is not accounted for. Thus,
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variables of interest may be seen as being neither purely stationary nor purely non-
stationary. The inference also hinges on whether structural changes are modeled.
Therefore, our results imply that if the environmental time series used in these
studies have similar properties, a similar intervention term should be allowed.9

Most importantly, in light of our conjecture – if the data can be viewed as
a mean-reverting process after allowing for policy dummy variables, then our
empirical results strongly support the perceived effects that EPA had on emissions
trends.10 Thus, we conclude that 1970 EPA mandates have permanent impacts on
emissions and that they have been effective.

3.2. HAVE EPA MANDATES HAD A PERMANENT EFFECT ON EMISSION

LEVELS?

Our second empirical method extrapolates information from the time series by
using Box and Tiao’s (1975) intervention analysis approach. One important
advantage of this method is that we can examine whether EPA mandates had
a permanent, abrupt, gradual, or temporary impact on emissions. As our above
results indicate, log(NOX1) is a difference-stationary time-series, leading us to
use the first difference data �log(NOX1) to achieve stationarity for the inter-
vention analysis. Despite this obvious choice of the first difference data, we also
consider data in levels since log(NOX1) may be a trend stationary process after
allowing policy dummy variables. We therefore consider two different models for
the intervention analysis.

Our first model type is the ARIMA(p,1,q) model where the first differences
of the data, �log(NOX1), are used. Our second model type is the ARIMA(p,0,q)
model where the level data, log(NOX1), are used. To facilitate estimation of the
ARIMA models, we eliminate the deterministic portion of the time series by
subtracting the mean of the first difference data, and de-trending the level data. The
dummy variable coefficients in the analysis are therefore interpreted as deviations
from the mean for the first differenced data and deviation from the trend function
for the level data.

To estimate the intervention models, we consider the usual approach:11 identify
the ARIMA models without intervention terms, and estimate the intervention
models based on a priori identified models. For this task, we use the ITSM (Inter-
active Time Series Modelling) 6.0 software developed by Brockwell and Davis
(1996) to identify and estimate the ARIMA models. For model identification
purposes, we use the Akaike Information Criterion (AIC) to identify appropriate
values of p and q in our ARMA(p,q) models. Using maximum likelihood estimates,
we allow p, q = 0, 1, . . . , 4, and choose p and q that minimize Akaike’s AIC. We
then use numerical optimization procedures to obtain maximum likelihood (ML)
estimates of the parameters of our ARMA models, with selected orders p and q
along with preliminary ML estimates. If fitted models are satisfactory, then the
residuals should have the appearance of a realization of white noise. As a diagnostic
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check, we use the Portmanteau test of Box and Pierce, and other non-parametric
tests for randomness of residuals.12 We find that the ARIMA(1,1,0) model provides
a best fit for the logged, first difference data. For the level data, however, we find
the ARIMA(2,0,0) model is the superior choice.

We consider different specifications for permanent, gradual, and temporary
impacts as follows:

φ(L)yt = ω(L)

δ(L)
Z1t + ϕ(L)

c(L)
Z2t + θ(L)ut (5)

where φ(L) = 1 − φ1L − . . . − φpLp, ω(L) = ω0 + ω1L + . . . + ωrL
r, ϕ(L) =

ϕ0+ϕ1L+. . .+ϕnL
n, δ(L) = 1−δ1L−. . .−δmLm, c(L) = 1−δ1L−. . .−δsL

s , and
θ(L) = 1− θ1L− . . .− θqL

q ; and L is a lag operator such that Lkxt = xt−k. Under
this formulation, φ(L) and θ(L) denote the usual polynomials for the ARMA
models, and ω(L) and ϕ(L) are polynomials for the intervention terms. The poly-
nomials δ(L) and c(L) capture gradual impacts of EPA intervention. The variable
yt represents �log(NOX1) for the first difference data, and represents log(NOX1)
for the level data. The first term on the right hand side includes the intervention
terms, where Z1t and Z2t denote the exogenous policy variables. We define Dt = 1
for t ≥ 1970, and 0 otherwise; and Bt = 1 for t = 1970, and zero otherwise.
We also define DT ∗

t = t for t ≥ 1970, and 0 otherwise. The coefficient of the
one-time dummy variable Bt captures temporary changes that tend to disappear
quickly, while the coefficient of Dt captures the changed mean of the time series
after the intervention.

For the ARIMA(p,1,q) model using the first difference data, Z1t includes the
policy dummy variables such that Z1t = Dt for the permanent effects of inter-
ventions, while Z2t is not included. To capture the temporary impacts, we set
Z1t = Bt , and Z2t is absent; therefore ωi and δi estimate the initial abrupt impact
and the gradual dynamic response of an event of the observed time series. For the
ARIMA(p,0,q) model using the level data, Z1t = Dt , and Z2t = DT ∗

t are used
to examine the permanent effect of interventions. The temporary effects are not
meaningful here and therefore ignored, when they are absorbed in the permanent
changes. In this case, ωi and δi estimate the initial abrupt impact and the gradual
dynamic response of an event on the level of the observed time series, whereas ϕi

and ci capture the same effects on the trend shift of the observed time series.
We first discuss the results of the intervention analysis with the ARIMA(p,1,q)

specifications, for which the first difference data, �log(NOX1), are used. Table III
presents these results. The results indicate that the estimated coefficients of ω0

are insignificant at conventional levels in all four model types. In models (A) and
(B), this finding suggests that abrupt impacts are not significant, while interpret-
ations from models (C) and (D) are that gradual effects are insignificant. The
coefficients of δ1 and δ2 are, however, significant at conventional levels for both
permanent and temporary changes.13 This result implies that EPA mandates had
gradual effects on emission flows. Examining the magnitude of these coefficients,
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Table III. Intervention analysis with ARIMA(p,1,q) specification

�log(NOX1) ARIMA(1,1,0) with interventions

φ1 ω0 δ1 δ2

(A) Abrupt & Permanent –0.389∗ –0.014
Z1t = Dt, δi = 0 (–4.03) (–1.58)

(B) Abrupt & Temporary –0.373∗ 0.012
Z1t = Bt , δi = 0 (–3.84) (0.209)

(C) Gradual & Permanent –0.395∗ –0.002 1.92∗ –0.962∗
Z1t = Dt, δi �= 0 (–4.04) (–0.495) (4.27) (–2.30)

(D) Gradual & Temporary –0.380∗ 0.020 0.992∗ –0.937∗
Z1t = Bt , δi �= 0 (–3.84) (0.744) (5.64) (–3.95)

∗Significant at the 5% level. Numbers in parentheses are t-statistics.

Table IV. Intervention analysis with ARIMA(p,0,q) specification

Log(NOX1) ARIMA(2,0,0) with interventions

φ1 φ2 ω0 δ1 ϕ0 c1

(A) Abrupt & permanent 0.517∗ 0.295∗ 0.871∗ –0.018∗
Z1t = Dt,Z2t = DT ∗

t , δi = 0, ci = 0 (5.0) (2.9) (2.6) (–2.7)

(C) Gradual & permanent 0.483∗ 0.285∗ 0.130 0.861∗ –0.001 0.911
Z1t = Dt,Z2t = DT ∗

t , δi �= 0, ci �= 0 (4.7) (2.8) (0.05) (4.2) (–0.03) (0.56)

∗Significant at the 5% level. Numbers in parentheses are t-statistics.

we observe that their sum is close to zero for the model with gradual and temporary
effects, implying that their effects will cancel out in the long run. Alternatively,
there is no such cancellation effect in the model with gradual and permanent
effects. Combining these results, we conclude that EPA intervention had gradual
and permanent changes on the growth rates of per capita NOx emissions.14

Table IV presents empirical results from models using the level data. In this
model, the estimated coefficients of ω0 and ϕ0 in the abrupt and permanent model
are significant at conventional levels. This result implies that EPA mandates have
led to an abrupt change in the level of emissions of NOx as well as an abrupt change
in its trend. Next, we observe that the estimated coefficient of δ1 is highly signifi-
cant in the gradual and permanent model while the estimated coefficient of c1 is
insignificant. As such, we conclude that EPA mandates had gradual and permanent
effects on the level of emissions, but the change in its trend is not gradual.15

In sum, our results suggest that the events surrounding 1970 led to gradual
and permanent changes on the NOx emission time path. This makes sense, as one
would expect that NOx emissions would take time to adjust to the new rules and
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regulations imposed in the 1970 Clean Air Act (CAA). The 1970 CAA contained a
number of key provisions. Given that motor vehicle emissions and fuel combustion
accounted for approximately 85% of all NOx emissions in 1970, the main provi-
sions for our purposes entail reductions from these types of sources. Concerning
the former, the 1970 CAA called for “at least a 90 per centum [reduction] from
the average of emissions of oxides of nitrogen actually measured from light duty
vehicles manufactured during model year 1971” (CAAA, PL 91-604, p. 1690). To
achieve this goal, the EPA stated that emissions standards must be met 5 years or
50,000 miles after vehicle purchase. Given that highway vehicle emissions depend
on fuel type, vehicle type, technology, and extent of travel, and that vehicle activity
levels are related to changes in economic conditions, fuel prices, cost of regula-
tions, and population characteristics, emissions are a function of vehicle activity
levels and emission rates per unit activity. A gradual change in emissions from on-
road vehicles is therefore expected since the turnover rate in the motor-vehicle fleet
is not instantaneous.

The second major source of NOx in the US is fuel combustion by industrial and
electric utilities. The 1970 CAA also allowed for a gradual decrease in emissions
from these sources. In particular, EPA established National Ambient Air Quality
Standards for each criteria air pollutant. For NOx, the primary standard was initially
0.053 PPM annual mean (maximum human exposure). The EPA created emissions
limits and monitoring for stationary sources to meet these criteria within due time,
allowing NOx emitters to gradually meet requirements.

3.3. HOW MUCH HAS BEEN SAVED DUE TO THE CLEAN AIR ACT OF 1970?

Given that our results suggest that EPA mandates had a permanent effect on emis-
sion flows, an exploratory probe can be conducted to calculate how large of an
effect EPA has had on reductions of NOx emissions, if one attributed all of the emis-
sions reductions to regulatory policy. The EPA recently estimated the retrospective
costs and benefits of the 1970 CAA between 1970–1990.16 This analytically
intensive self-evaluation found that Federal regulatory actions led to substantial
savings in criteria air pollutants. This section reconsiders how Federal intervention
affected estimated savings in nitrogen oxides during the regulatory era. We employ
the ARIMA forecasting models to examine this issue. We estimate ARIMA models
using emission data from pre-EPA mandate years – 1900 to 1969 – to obtain outside
sample forecasts for 1970 to 1994. We compare these outside sample forecasts
with actual values of emissions. Akin to EPA (1997), we assume that the emission
time series would have followed the patterns of the outside sample forecasts absent
EPA mandates. By doing so, we assume that the differences between the outside
forecasts and actual values are due to EPA mandates.

The first important problem in such an exercise is to find the most appropriate
ARIMA(p,d,q) model to represent the time series. As elaborated on above, since
the time series involves both deterministic and stochastic trends, a transformation
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Table V. Estimated ARMA models

Estimation results

Case 1 log(NOX1t) = 0.4799 log(NOX1t−1) + 0.2981 log(NOX1t−2) + û1t
(0.113) (0.114)

σ̂ = 0.0043, –2 logL = –181.9, Q(20) = 12.45
Turning point = 39, N(45.3, 3.482)
Difference Sign = 40, N(34.5, 2.432)
Rank test = 1244, N(1207.5, 295.92)

AIC = –175.49

Case 2 �log(NOX1t) = 0.4172 log(NOX1t−1) + û2t
(0.110)

σ̂ = 0.0046, –2 logL = –174.7, Q(20) = 14.3
Turning point = 40, N(44.7, 3.462)
Difference sign = 38, N(34.0, 2.422)
Rank test = 1165, N(1173, 289.62)

AIC = –170.52

to produce a new stationary series with mean zero is obligatory. Since the series
contains a unit root, we use first differences (d = 1), �log(NOX1t) to eliminate
any stochastic trends. For comparison purposes, we also use the level data (d = 0),
log(NOX1t).17 We follow a similar procedure to identify appropriate values of p
and q in our ARMA (p,q) models. The ML estimates corresponding to the selected
orders, and test statistics for randomness of residuals are in Table V. Results in
Table V provide vivid evidence of model appropriateness-all coefficients in the
ARMA models are significant at conventional levels. Furthermore, for each test
and for all residuals, we cannot reject the null hypothesis of a white noise process.
This is compelling evidence that the model is a “good fit” for our data.

Our next step is to compute best linear h-step predictors by using the estimated
model to predict values from 1970 to 1994. Since the prediction is established
with transformed data, a transformation inversion is necessary to fit a zero-
mean stationary model. Relevant inverted transformations include de-trending,
de-differencing, and taking exponentials of the logged series. The inverted trans-
formation allows us to obtain predicted values in original form, allowing a
comparison between forecasted emissions and actual values. Since our data are
measured as emissions per capita, we again multiply by US population to evaluate
emissions and reductions in emissions.

Figures 1a and b display plots of forecasted emissions, actual emissions, and
their differences, for each estimated model, where case 1 is based the ARMA
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Table VI. Comparison of emission savings (percent of total) for selected yearsa,b

Pollutant EPA quinqennial estimates Our quinqennial estimates

1975 1980 1985 1990 1975 1980 1985 1990

NOx 2.73 9.52 20.78 28.53 Case 1 –1.44 2.07 14.90 26.70

Case 2 7.13 14.74 32.16 48.44

aAlthough our model porvides annual savings, the EPA’s estimates are quinqennial,
from which they linearly interpolate other years. For the sake of comparison, therefore,
we also only report quinquennial figures.
bThe percentage of emissions saved for both the EPA and our estimates are calculated
using the following rule: (NCit – Cit)/NCit; where NCit (Cit) represents the no-control
(control) estimate of emission i in time period t.
cCase 1 is using level data and case 2 uses difference data.

model in level and case 2 is based on the ARIMA model in difference. An important
finding is that we observe predicted values absent EPA mandates to be considerably
above actual emissions levels after 1970. The difference between these two trends
is considered the emissions saved due to the 1970 CAA. We summarize the mean
emissions reductions for 1970–1990 in Table VI. Also in Table VI are quinquen-
nial estimates of saving figures from EPA’s (1997) self-assessment. Comparison of
empirical results shows that the estimate from Case 1 using the level data is very
close to estimates from EPA’s assessment. This assertion is based on the fact that
EPA quinqennial estimates of emissions saved over the period 1975–1990 are 2.73,
9.52, 20.78, and 28.53 whereas comparable estimates from case 1 are 1.44, 2.07,
14.90, and 26.70.18 Somewhat surprising is the fact that our relatively simple proce-
dures produced estimates that closely resemble EPA’s savings figures computed
from very analytically intense methods. Meanwhile, the estimated emissions saved
from case 2 using the differenced data are nearly 48%. In this case, the estimated
savings are much higher compared to estimates from the model based on the level
data.

Accuracy of predicting pollution paths has far reaching implications, such
as aiding in the development of optimal abatement strategies and multi-lateral
bargaining strategies. In our analysis of NOx emissions, two quite different predic-
tions are provided from our models, which are not atypical (see, e.g., Diebold
and Senhadji 1996; Diebold and Kilian 1999). The results suggest that trend- and
difference-stationary models of the same time series often provide different point
forecasts, and that pre-testing improves forecasting accuracy relative to routinely
differencing or using level data. Following Diebold and associates, we are inclined
to adopt the estimates based on the model using the differenced data, since the pre-
testing result indicates that the time path before 1970 EPA mandates is difference
stationary. Consequently, EPA’s estimated savings figures for NOx are lower than
our preferred estimates.



34 JUNSOO LEE AND JOHN A. LIST

4. Concluding Remarks

Before commencing a rigorous assessment of theory or specifying an econometric
model, a thorough investigation of the time series properties of the data has become
almost second-hand amongst many economists. Yet to date little has been done
to further our understanding of our own time series data, where a proper under-
standing of certain time series is invaluable to forward optimal policy prescriptions.
As an illustrative case study, we present a battery of tests on US NOx emission
data from 1900–1994 to provide a first examination of its time-series properties.
Our analysis both highlights recent time series innovations and provides many new
insights.

First, in certain respects, our empirical results suggest that NOx emissions can
be seen as being neither purely stationary nor purely non-stationary. The infer-
ence hinges on whether EPA mandates are accounted for or not. This finding
is fundamentally important when developing appropriate modeling strategies to
verify theories of optimal abatement strategies. Second, we find that the relation-
ship between EPA mandates and NOx emissions are of a deep nature, such that
changes in EPA mandates have had a permanent effect on the path of NOx emis-
sions. This finding speaks well of recent EPA policies, and refutes the argument that
governmental mandates have a transitory effect, or influence only the temporary
component of long-run pollution trends. We conclude by estimating emission
savings figures due to the 1970 Clean Air Act. Our estimates are consonant with
EPA’s recent estimates-verifying the premise that the US has avoided about 48% of
NOx emissions due to the Clean Air Act of 1970. Yet a major caveat in our approach
is that we are attributing all of the emissions reductions to regulatory policy.
An appropriate next step in this line of research is to parse out other potentially
significant events to provide a “cleaner” estimate of the emissions saved.

Acknowledgements

We thank Craig Gallet and Mark Strazicich for very helpful comments.

Notes

1. For exceptions, see recent studies of metals use and resource commodity prices (e.g., Labson and
Crompton (1993), Labson (1995), and Ahrens and Sharma (1997)), and on the study of fisheries
economics Mkenda et al. (2001).

2. In their seminal paper, Nelson and Plosser (1982) suggest that most variation from shocks or
innovations to macroeconomic time series is due to a (non-stationary) permanent or random walk
component, with little variation attributed to a (stationary) temporary cyclical component. We
follow Beverage and Nelson (1981) and estimate each of permanent and transitory components
of the per-capita NOx series. It has been found that the permanent component dominates (higher
than 97% at almost all time periods) in the NOx series; the plot of the permanent and temporary
components in the per-capita NOx is provided in the Appendix.

3. An anonymous referee points out convincingly that it may not be credible to treat all deviations
below a trend of emissions are reduced as a result of the Clean Air Act of 1970. The oil price
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shock of 1973 and its resultant effect on technological change to save energy intensive sources
might have contributed to the structural change in NOx emissions. Given a short time interval
between the 1970 CAA and the 1973 oil shock and the changes might have been made gradually,
it is difficult to decompose empirically the effects of each of these events. In a nutshell, our
estimates reflect all of these mixed effects and when presenting estimates below it is important
to note that we are attributing all of the emissions reductions to regulatory policy.

4. See List (1999) for a more thorough discussion of the NOx data.
5. We follow EPA’s (1997) self-assessment and analyze how EPA mandates affected emission flows

after 1970.
6. We transformed the data by taking the logarithms of per-capita emissions: log(NOX1) =

log(NOx/Population). This data transformation does not influence the main results, but using
logged data will typically reduce data fluctuations.

7. Following EPA (1997), we set Dt = 1, for t ≥ 1970, and = 0 otherwise.
8. Here, the augmented version of the Perron’s test can be alternatively used. But, the PP-type tests

are known to be more powerful. Furthermore, given that the break year is known, and has been
exogenously imposed, we do not have to consider the so-called endogenous unit root tests in
which break points are determined from the data.

9. We are not aware of any EKC studies that take into account these two factors at the same time.
10. Our result is reinforced by the unit root test results applied to the pre-1970 data-test results using

the 1901–1970 (or 1901–1960) data, not shown here to conserve space, indicate the presence of
a unit root.

11. We also considered joint model identification by determining the orders of the ARMA and inter-
vention terms. This method appears a superior choice, but the ARIMA model estimations from
this method often fail because the models are not causal. Thus, we adopt a two-step procedure:
i) identify the orders of the ARMA terms; ii) identify orders of intervention terms based on a
priori specified ARIMA models.

12. These include the turning points test, the difference sign test, and the rank test (Brockwell and
Davis 1991).

13. To identify the maximum orders for δ(L), we considered different orders and found that using
two lags was most appropriate.

14. Note that the dynamic multiplier is given as the sum of these coefficients. Also note that we are
using first differences of the logged data; thus it is appropriate to speak of changes in growth
rates.

15. Based on the magnitude of the estimated coefficient of δ1, we can say, for instance, that even
after 5 years the gradual effect is still significant with 0.13 × 0.8615 = 0.13 × 0.0473 since
0.13/(1 − 0.861) = 0.13 × (0.861 + 0.8612 + 0.8613 + 0.8614 + 0.8615 + . . .).

16. Section 812 of the CAAA of 1990 requires the EPA to assess periodically the effect of the Clean
Air Act on the “public health, economy, and environment of the United States”, and to report
subsequent findings to the Congress (EPA 1997).

17. Inspection of the graph of the series reveals that a linear trend is included in log(NOX1t). Thus,
we detrend the series with a linear trend function in modeling the logged data, and use the
transformed series in estimating ARMA models. For the first difference series, a trend function
may not be necessary; thus, we demean the series with a drift term before estimating ARMA
models.

18. The percentage of emissions saved for both the EPA and our estimates are calculated using the
following rule: (NCit – Cit)/NCit; where NCit (Cit) represents the no-control (control) estimate
of NOx in time period t.
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Appendix A

Permanent (PERM) and temporary (TEMP) components of the per-capita NOx.

Appendix B

Correlogram of NOX1

Lags ACF PACF Q-stat P-value

1 0.965 0.965 91.264 0.000
2 0.939 0.111 178.55 0.000
3 0.911 –0.016 261.69 0.000
4 0.885 0.001 340.96 0.000
5 0.851 –0.121 415.10 0.000
6 0.818 –0.028 484.41 0.000
7 0.785 –0.031 548.86 0.000
8 0.752 –0.002 608.82 0.000
9 0.713 –0.114 663.23 0.000

10 0.678 0.030 713.10 0.000
11 0.644 –0.001 758.58 0.000
12 0.609 –0.033 799.74 0.000
13 0.572 –0.029 836.53 0.000
14 0.540 0.023 869.66 0.000
15 0.506 –0.022 899.17 0.000
16 0.471 –0.055 925.03 0.000
17 0.432 –0.065 947.11 0.000
18 0.397 –0.011 965.98 0.000
19 0.364 0.017 982.03 0.000
20 0.328 –0.046 995.26 0.000




